Bacterial adhesion onto nanofiltration and reverse osmosis membranes: effect of permeate flux.
نویسندگان
چکیده
The influence of permeate flux on bacterial adhesion to NF and RO membranes was examined using two model Pseudomonas species, namely Pseudomonas fluorescens and Pseudomonas putida. To better understand the initial biofouling profile during NF/RO processes, deposition experiments were conducted in cross flow under permeate flux varying from 0.5 up to 120 L/(h m(2)), using six NF and RO membranes each having different surface properties. All experiments were performed at a Reynolds number of 579. Complementary adhesion experiments were performed using Pseudomonas cells grown to early-, mid- and late-exponential growth phases to evaluate the effect of bacterial cell surface properties during cell adhesion under permeate flux conditions. Results from this study show that initial bacterial adhesion is strongly dependent on the permeate flux conditions, where increased adhesion was obtained with increased permeate flux, until a maximum of 40% coverage was reached. Membrane surface properties or bacterial growth stages was further found to have little impact on bacterial adhesion to NF and RO membrane surfaces under the conditions tested. These results emphasise the importance of conducting adhesion and biofouling experiments under realistic permeate flux conditions, and raises questions about the efficacy of the methods for the evaluation of antifouling membranes in which bacterial adhesion is commonly assessed under zero-flux or low flux conditions, unrepresentative of full-scale NF/RO processes.
منابع مشابه
A physical impact of organic fouling layers on bacterial adhesion during nanofiltration.
Organic conditioning films have been shown to alter properties of surfaces, such as hydrophobicity and surface free energy. Furthermore, initial bacterial adhesion has been shown to depend on the conditioning film surface properties as opposed to the properties of the virgin surface. For the particular case of nanofiltration membranes under permeate flux conditions, however, the conditioning fi...
متن کاملSeawater Desalination by using Nanofiltration (NF) and Brackish Water Reverse Osmosis (BWRO) Membranes in Sequential Mode of Operation
In this study, the applicability of nanofiltration (NF) membranes as a pretreatment prior to reverse osmosis (RO) in seawater desalination was investigated. The membranes used wereNF270 and NF90 as the NF membranes, while the brackish water (BW) RO membrane BW30 was used as the RO membrane. In desalination tests, permeates of the NF membraneswere collected and used as the feed to th...
متن کاملThe importance of laboratory water quality for studying initial bacterial adhesion during NF filtration processes.
Biofouling of nanofiltration (NF) and reverse osmosis (RO) membranes for water treatment has been the subject of increased research effort in recent years. A prerequisite for undertaking fundamental experimental investigation on NF and RO processes is a procedure called compaction. This involves an initial phase of clean water permeation at high pressures until a stable permeate flux is reached...
متن کاملPolishing Step Purification of High-Strength Wastewaters by Nanofiltration and Reverse Osmosis
This article reports findings on the use of nanofiltration (NF) and reverse osmosis (RO) for secondary treatment of high-strength rendering facility wastewaters following an ultrafiltration step. These wastewaters present significant challenges to classical treatment technologies. Constant-pressure, direct-flow membrane filtration experiments were done to screen for flux and effluent water perm...
متن کاملEffect of Organoclay on the Performance of Reverse Osmosis Membrane
This study investigated the effect of Cloisite15A (C15A) organoclay in the substrate layer on the performance of reverse osmosis (RO) membranes. The substrate of the RO membranes was modified using different loading of C15A (ranging from 0.3 - 0.7 wt%) within polysulfone (PSf) substrate and the polyamide (PA) selective layer was formed on the top. Effect of the modified substrate layer on the w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Water research
دوره 63 شماره
صفحات -
تاریخ انتشار 2014